Single-Stranded DNA Uptake during Gonococcal Transformation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-Stranded DNA Uptake during Gonococcal Transformation.

UNLABELLED Neisseria gonorrhoeae is naturally competent for transformation. The first step of the transformation process is the uptake of DNA from the environment into the cell. This transport step is driven by a powerful molecular machine. Here, we addressed the question whether this machine imports single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) at similar rates. The fluorescence ...

متن کامل

Concerted Spatio-Temporal Dynamics of Imported DNA and ComE DNA Uptake Protein during Gonococcal Transformation

Competence for transformation is widespread among bacterial species. In the case of Gram-negative systems, a key step to transformation is the import of DNA across the outer membrane. Although multiple factors are known to affect DNA transport, little is known about the dynamics of DNA import. Here, we characterized the spatio-temporal dynamics of DNA import into the periplasm of Neisseria gono...

متن کامل

Formation of single-stranded DNA during DNA transformation of Neisseria gonorrhoeae.

Neisseria gonorrhoeae is naturally competent for DNA transformation. In contrast to other natural prokaryotic DNA transformation systems, single-stranded donor DNA (ssDNA) has not previously been detected during transformation of N. gonorrhoeae. We have reassessed the physical nature of gonococcal transforming DNA by using a sensitive nondenaturing native blotting technique that detects ssDNA. ...

متن کامل

Transformation of Bacillus subtilis by single-stranded plasmid DNA.

The single-stranded form of a pE194-based plasmid transformed Bacillus subtilis protoplasts at least as efficiently as did the double-stranded plasmid, but the single-stranded form did not detectably transform B. subtilis competent cells.

متن کامل

Managing Single-Stranded DNA during Replication Stress in Fission Yeast

Replication fork stalling generates a variety of responses, most of which cause an increase in single-stranded DNA. ssDNA is a primary signal of replication distress that activates cellular checkpoints. It is also a potential source of genome instability and a substrate for mutation and recombination. Therefore, managing ssDNA levels is crucial to chromosome integrity. Limited ssDNA accumulatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Bacteriology

سال: 2016

ISSN: 0021-9193,1098-5530

DOI: 10.1128/jb.00464-16